Article ID Journal Published Year Pages File Type
28006 Journal of Photochemistry and Photobiology A: Chemistry 2008 14 Pages PDF
Abstract

Eight novel perylene imide derivatives were synthesized to determine the effect of the nature of electron donating substituents on the perylene core (ether or N-amino), the position of the carboxylic acid anchoring group and the presence of a fused benzimidazole moiety on the performances of dye-sensitized solar cells. The photovoltaic efficiency under AM1.5 of these new dyes, although not optimized, ranges from 0.2% until 2.3%. We note the importance of the position-anchoring group, which controls the electron injection efficiency. With respect to the excited-state electron donor strength, four O-aryl substituents at the bay position lead to similar effect as two N-piperidinyl groups but with a lower propensity to aggregation and give slightly higher photovoltaic performance than the latter. The benzimidazole unit extends the absorbance of the perylene imide to longer wavelengths, but this effect is lower than introducing charge transfer transition with N-amino substituents. Overall, this work shows that perylene imide remains a promising molecular basis for the future design of new fully organic sensitizers for nanostructured TiO2 solar cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,