Article ID Journal Published Year Pages File Type
280065 International Journal of Solids and Structures 2008 14 Pages PDF
Abstract

In this paper a set of stability equations for thick cylindrical shells is derived and solved analytically. The set is obtained by integration of the differential stability equations across the thickness of the shell. The effects of transverse shear and the non-linear variation of the stresses and displacements are accounted for with the aid of the higher order shell theory proposed by [Voyiadjis, G.Z. and Shi, G., 1991, A refined two-dimensional theory for thick cylindrical shells, International Journal of Solids and Structures, 27(3), 261–282.]. For a thick shell under external hydrostatic pressure, the stability equations are solved analytically and yield an improved expression for the buckling load. Reference solutions are also obtained by solving numerically the differential stability equations. Both the full set that contains strains and rotations as well as the simplified set that contains rotations only were solved numerically. The relative magnitude of shear strain and rotation was examined and the effect of thickness was quantified. Differences between the benchmark solutions and the analytic expressions based on the refined theory and the classical shell theory are analysed and discussed. It is shown that the new analytic expression provides significantly improved predictions compared to the formula based on thin shell theory.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,