Article ID Journal Published Year Pages File Type
280929 International Journal of Solids and Structures 2006 19 Pages PDF
Abstract

The so-called viscoplastic consistency model, proposed by Wang, Sluys and de Borst, is extended here to the integration of a thermoviscoplastic constitutive equation for J2 plasticity and adiabatic conditions. The consistency condition in this case includes not only strain rate but also the effect of temperature on the yield function. Using the backward Euler integration scheme to integrate the constitutive equations, an implicit algorithm is proposed, leading to generalized expressions of the classical return mapping algorithm for J2 plasticity, both for the iterative calculation of the plastic multiplier increment and for the consistent tangent operator when strain rate and temperature are considered also as state variables of the hardening equation. The model was implemented in a commercial finite element code and its performance is demonstrated with the numerical simulation of four Taylor impact tests.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,