Article ID Journal Published Year Pages File Type
28278 Journal of Photochemistry and Photobiology A: Chemistry 2009 9 Pages PDF
Abstract

Two series of novel ruthenium bipyridyl dyes incorporating sulfur-donor bidentate ligands with general formula [Ru(R-bpy)2C2N2S2] and [Ru(R-bpy)2(S2COEt)][NO3] (where R = H, CO2Et, CO2H; C2N2S2 = cyanodithioimidocarbonate and S2COEt = ethyl xanthogenate) have been synthesized and characterized spectroscopically, electrochemically and computationally. The acid derivatives in both series (C2N2S23 and S2COEt 6) were used as a photosensitizer in a dye-sensitized solar cell (DSSC) and the incident photo-to-current conversion efficiency (IPCE), overall efficiency (η) and kinetics of the dye/TiO2 system were investigated. It was found that 6 gave a higher efficiency cell than 3 despite the latter dye's more favorable electronic properties, such as greater absorption range, higher molar extinction coefficient and large degree of delocalization of the HOMO. The transient absorption spectroscopy studies revealed that the recombination kinetics of 3 were unexpectedly fast, which was attributed to the terminal CN on the ligand binding to the TiO2, as evidenced by an absorption study of R = H and CO2Et dyes sensitized on TiO2, and hence leading to a lower efficiency DSSC.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , ,