Article ID Journal Published Year Pages File Type
2828460 Journal of Structural Biology 2015 15 Pages PDF
Abstract

Single particle reconstruction methods based on the maximum-likelihood principle and the expectation–maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , ,