Article ID Journal Published Year Pages File Type
287259 Journal of Sound and Vibration 2015 16 Pages PDF
Abstract

Due to the prominent broadband performance of nonlinear vibration energy harvester, theoretical evaluations for the mean-square response to random excitations and the associated mean output power are of great interest. By employing the generalized harmonic transformation and equivalent nonlinearization technique, established here is a semi-analytical solution of random response for nonlinear vibration energy harvesters subjected to Gaussian white noise excitation. The semi-analytical solution for stationary probability density of the system response is obtained by two iterative processes. Numerical results for a Duffing-type harvester demonstrate rapid convergence of the iterative processes and high evaluation accuracy for the mean-square response and the mean output power. Furthermore, the influence of harvesting circuit on the mechanical subsystem can be converted to modified quasi-linear damping and stiffness with energy-dependent coefficients, which is different from the traditional viewpoint on the equivalence of constant-coefficient damping and provides more comprehensive explanation on the influence of harvesting circuit.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,