Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
28994 | Journal of Photochemistry and Photobiology A: Chemistry | 2008 | 8 Pages |
Photocatalytic treatment of polluted air by odorous contaminants – ammonia and butyric acid – is investigated in a plug-flow reactor covered by non-woven fiber textile coated with TiO2. For the first time, the single-component degradation pathway of ammonia by photocatalysis at ambient condition is highlighted. It appears fundamentally different compared to the butyric acid degradation pathway. The ammonia degradation pathway highlights a possible auto-accelerated behavior of the reaction. The chemical degradation kinetics follows the Langmuir–Hinshelwood model, though observed oxidation rates depend upon flow conditions in the reactor. Thus, interpretation of degradation results through a model considering the Langmuir–Hinshelwood approach and mass transfer phenomenon is presented. This model succeeds with a pair of determined kinetic constants and mass transfer coefficients to describe experimental results for different flow rates and for both pollutants, though they present wide dissimilarities in their degradation pathways.