Article ID Journal Published Year Pages File Type
2951614 Journal of the American College of Cardiology 2010 10 Pages PDF
Abstract

ObjectivesThe purpose of this study was to investigate the efficiency of small interfering ribonucleic acid (siRNA) in murine arteries. We transfected it using a nonviral ultrasound-microbubble–mediated in vivo gene delivery system.BackgroundsiRNA is an effective methodology to suppress gene function. The siRNA can be synthesized easily; however, a major obstacle in the use of siRNA as therapeutics is the difficulty involved in effective in vivo delivery.MethodsTo investigate the efficiency of nonviral ultrasound-microbubble–mediated in vivo siRNA delivery, we used a fluorescein-labeled siRNA, green fluorescent protein (GFP) siRNA, and intercellular adhesion molecule (ICAM)-1 siRNA in murine arteries. Murine femoral arteries were injured using flexible wires to establish arterial injury.ResultsThe fluorescein-labeled siRNA and GFP siRNA showed that this nonviral approach could deliver siRNA into target arteries effectively without any tissue damage and systemic adverse effects. ICAM-1 siRNA transfection into murine injured arteries significantly suppressed the development of neointimal formation in comparison to those in the control group. Immunohistochemistry revealed that accumulation of T cells and adhesion molecule positive cells was observed in nontreated injured arteries, whereas siRNA suppressed accumulation.ConclusionsThe nonviral ultrasound-microbubble delivery of siRNA ensures effective transfection into target arteries. ICAM-1 siRNA has the potential to suppress arterial neointimal formation. Transfection of siRNA can be beneficial for the clinical treatment of cardiovascular and other inflammatory diseases.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , , ,