Article ID Journal Published Year Pages File Type
2968749 Journal of Electrocardiology 2010 6 Pages PDF
Abstract

Structural inhomogeneities in cardiac tissue have been associated with increased cellular repolarization alternans in animal experiments and increased T-wave alternans (TWA) in clinical studies. However, the effect of structural inhomogeneities on the relationship between cellular alternans and TWA has not been thoroughly investigated. We created 1-dimensional multicellular fiber models with and without a resistive barrier in various fiber regions and paced each model to induce cellular alternans. The models demonstrate that a resistive barrier in one fiber region substantially alters cellular repolarization alternans throughout the fiber. A midmyocardial or subepicardial barrier increase both TWA amplitude and maximum cellular alternans magnitude, relative to a fiber without a barrier. In addition, a direct relationship exists between TWA amplitude and maximum cellular alternans magnitude, which was highly dependent on barrier location. These results suggest that the position of a structural inhomogeneity within the myocardium may have substantial effects on dynamic repolarization instability and arrhythmogenicity.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, ,