Article ID Journal Published Year Pages File Type
30251 Journal of Photochemistry and Photobiology B: Biology 2009 9 Pages PDF
Abstract

Previous research has proven that the Poly (2,6-dimethyl-1, 4-phenylene oxide) (PPO) dosimeter is capable of receiving both in-air and underwater UV exposures that are significantly greater than those of the more commonly used polysulphone dosimeter, within a range of accuracy close to what would be expected of dosimetric measurements made in-air provided that the necessary calibrations are completed correctly by factoring in different atmospheric column ozone levels, SZA ranges, varying water turbidity and DOM levels. However, there is yet to be an investigation detailing the performance of the PPO dosimeter and its ability to measure UV in an actual field environment over an extended period of time. This research aims to bridge this gap in the knowledge by presenting a measurement campaign carried out in two real world aquatic environments and a simulated sea water environment using a batch of PPO dosimeters set at different depths and aligned to a range of different angles and geographical directions by means of attachment to a custom built dosimeter submersible float (DSF) unit over the space of a year at a sub-tropical location. Results obtained from this measurement campaign were used to compute a Kd value for the sea water in each particular season. These Kd values where found to be in close agreement to standalone Kd values derived from results taken using a standard calibrated spectrometer in the same sea water.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,