Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3030711 | Trends in Cardiovascular Medicine | 2009 | 8 Pages |
During activation of the sympathetic nervous system, cardiac performance is increased as part of the fight-or-flight stress response. The increase in contractility with sympathetic stimulation is an orchestrated combination of intrinsic inotropic, lusitropic, and chronotropic effects, mediated in part by activation of β-adrenergic receptors and protein kinase A. This causes phosphorylation of several Ca cycling proteins in cardiac myocytes (increasing Ca entry via L-type Ca channels, sarcoplasmic reticulum Ca pumping, and the dissociation rate of Ca from the myofilaments). Here, we discuss how stimulation of the Na/K-ATPase, mediated by phosphorylation of phospholemman (a small sarcolemmal protein that associates with and modulates Na/K-ATPase), is an additional important player in the sympathetic fight-or-flight response. Enhancement of Na/K- ATPase activity limits the rise in [Na]i caused by the higher level of Na influx and by doing so limits the rise in cellular and sarcoplasmic reticulum Ca load by favoring Ca extrusion via the Na/Ca exchanger. Thus, phospholemman-mediated activation of the Na/K-ATPase may prevent Ca overload and triggered arrhythmias during stress.