Article ID Journal Published Year Pages File Type
30613 Journal of Photochemistry and Photobiology B: Biology 2006 7 Pages PDF
Abstract

Plant defenses against photo-oxidative stress have been studied almost exclusively with respect to stress responses, and little is known about how non-enzymic antioxidants change under constant conditions without a time cue or an environmental stress. Here, we show that, in both the flagellated alga Euglena gracilis Z and the angiosperm Spinacia oleracea L., the potent antioxidant l-ascorbic acid (Asc) displays a circadian rhythm with a maximum at subjective midday, a physiological state reflecting that attained at noon under daily light/dark cycles. Thus, photosynthetic organisms can maximize antioxidant levels in anticipation of midday, when photo-oxidative stress is most severe. These results may partly explain the in-phase circadian UV-C resistance rhythm recently identified in the alga. However, the Asc, but not the resistance, rhythm wanes in continuous darkness. This suggests the presence of persistent circadian rhythms in the levels of other antioxidants in continuous darkness, which may account for the UV-C resistance rhythm.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,