Article ID Journal Published Year Pages File Type
30756 Journal of Photochemistry and Photobiology B: Biology 2007 8 Pages PDF
Abstract

The photolysis of lumichrome, riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) was studied in air-saturated aqueous solution at room temperature in the presence of appropriate electron donors: ascorbic acid, aromatic amino acids or amines, e.g. ethylenediaminetetraacetate (EDTA). The overall reaction is conversion of oxygen via the hydroperoxyl/superoxide radical into hydrogen peroxide. The quantum yield of oxygen uptake increases with the donor concentration, e.g. up to 0.3 for riboflavin, FMN or FAD in the presence of EDTA or ascorbic acid (0.3–10 mM). The formation of H2O2 is initiated by quenching of the acceptor triplet state by the electron donor and subsequent reaction of the semiquinone radical with oxygen. Specific properties of flavins are discussed including the radicals involved and the pH and concentration dependences. The quantum yield of photodegradation is low under air, but substantial under argon, where the major product absorbing in the visible spectral range is the corresponding hydroquinone.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
,