Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
3243080 | Injury | 2006 | 5 Pages |
SummaryAntibiotic therapy for deep-seated staphylococcal infections, especially when they are associated with artificial devices used for orthopedic surgery is often associated with failure. Standard anti-staphylococcal bactericidal antibiotics, such as semi-synthetic penicillins, cephalosporins, or glycopeptides, are effective when given prophylactically in clinical conditions or experimental trials of implant-related infections. However, the efficacy of all anti-staphylococcal agents is seriously diminished on already established implant-related deep-seated infections, which then frequently require surgical implant removal to obtain a cure. The failure of antibiotic therapy to cure established staphylococcal foreign-body infections may arise in part from a broad-spectrum phenotypic tolerance expressed in vivo to different classes of antimicrobial agents. The molecular and physiological mechanisms of this in vivo tolerance remain poorly understood.