Article ID Journal Published Year Pages File Type
33451 New Biotechnology 2011 7 Pages PDF
Abstract

Previous studies on an arachidonic acid-producing fungus, Mortierella alliacea YN-15, suggested that its intracellular lipase plays an important role in the metabolism of exogenous and storage lipids. The lipase purified in this study through acetone precipitation and three-step chromatography was estimated to be about 11 kDa in size by SDS-PAGE and mass spectrometry, and it tended to form large aggregates in aqueous solution. The purified lipase retained its activity over wide ranges of pH (2–12) and temperature (20–80°C). Its activity was enhanced by the Ca2+ ion and reduced by some heavy metal ions, such as Zn2+ and Hg2+, and diethylpyrocarbonate. Among the various substrates tested, monoacylglycerols containing long-chain unsaturated fatty acids and phosphatidylcholine were preferentially hydrolyzed over triacylglycerols and fatty acid methyl esters. The lipase strongly hydrolyzed the sn-1/3 ester bonds and weakly hydrolyzed the sn-2 ester bonds of triolein, and it also catalyzed the acylglycerol synthesis reaction in a solvent-free two-phase system. The results indicate that triacylglycerol may be formed via 2-monoacylglycerol. Thus, the highly stable M. alliacea lipase may be useful for the synthesis of structured lipids, particularly acylglycerols containing functional unsaturated fatty acids at the sn-2 position.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,