Article ID Journal Published Year Pages File Type
3398 Biochemical Engineering Journal 2013 9 Pages PDF
Abstract

•Cold enzyme hydrolysis was used in ethanol production.•An integrated statistical design was applied for optimized the hydrolysis conditions.•High biomass, ethanol concentration and starch utilization ratio were obtained.•The optimized strategies were feasible and reliable through verification tests.

Cold enzyme hydrolysis was investigated on the ethanol production by Saccharomyces cerevisiae during simultaneous saccharification and fermentation (SSF) processing. An integrated statistical design, which incorporated single factor design, response surface methodology (RSM) and weighting coefficient method, was used to determine the optimum hydrolysis conditions leading to maximum biomass, ethanol concentration and starch utilization ratio. After the studied ranges of α-amylase, glucoamylase and liquefaction time were identified by single factor design, RSM was used to further optimize the hydrolysis conditions for each objective. The results showed that, under hydrolysis condition optimized with RSM, biomass, ethanol concentration and starch utilization ratio reached 4.401 ± 0.042 × 108 cells/ml, 14.81 ± 0.23% (wt.%) and 94.52 ± 0.53%, respectively. Finally, multi-objective optimization (MOO) was applied to obtain a compromised result of three desirable responses by weighting coefficient methodology. Biomass of 4.331 ± 0.038 × 108 cells/ml, ethanol concentration of 14.12 ± 0.21% (wt.%) and starch utilization ratio of 92.88 ± 0.21% were simultaneous obtained when hydrolysis at pH 5.9 for 114 min with 233 IU/gstarch α-amylase and 778 IU/gstarch glucoamylase. The optimized conditions were shown to be feasible and reliable through verification tests.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,