Article ID Journal Published Year Pages File Type
3416783 Microbial Pathogenesis 2011 9 Pages PDF
Abstract

The chlamydia-specific hypothetical protein CT311 was detected both inside and outside of the chlamydial inclusions in Chlamydia trachomatis-infected cells. The extra-inclusion CT311 molecules were distributed in the host cell cytoplasm with a pattern similar to that of CPAF, a known Chlamydia-secreted protease. The detection of CT311 was specific since the anti-CT311 antibody labeling was only removed by absorption with CT311 but not CPAF fusion proteins. In addition, both anti-CT311 and anti-CPAF antibodies only detected their corresponding endogenous proteins without cross-reacting with each other or any other antigens in the whole cell lysates of C. trachomatis-infected cells. Although both CT311 and CPAF proteins were first detected 12 h after infection, localization of CT311 into host cell cytosol was delayed until 24 h while CPAF secretion into host cell cytosol was already obvious by 18 h after infection. The host cell cytosolic localization of CT311 was further confirmed in human primary cells. CT311 was predicted to contain an N-terminal secretion signal sequence and the CT311 signal sequence directed secretion of PhoA into bacterial periplasmic region in a heterologous assay system, suggesting that a sec-dependent pathway may play a role in the secretion of CT311 into host cell cytosol. This hypothesis is further supported by the observation that secretion of CT311 in Chlamydia-infected cells was blocked by a C16 compound known to inhibit signal peptidase I. These findings have provided important molecular information for further understanding the C. trachomatis pathogenic mechanisms.

Related Topics
Life Sciences Immunology and Microbiology Microbiology
Authors
, , , , ,