Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
34517 | Process Biochemistry | 2014 | 10 Pages |
•This is the first report on the characterization of a β-fructofuranosidase from Lactobacillus plantarum.•The SacA enzyme was predicted to have an additional α-helix at the N-terminal end of the molecule.•The SacA enzyme can hydrolyze various fructans and FOS is the most preferred substrate.•Expression of sacA gene in Lactobacillus rhamnosus GG enabled the recombinant strain to metabolize FOS.
Fructooligosaccharides (FOS) are prebiotics that selectively stimulate the growth and activity of lactobacilli and bifidobacteria. These strains metabolize FOS with endogenous β-fructofuranosidase. In this study, a β-fructofuranosidase gene from Lactobacillus plantarum ST-III designated sacA was cloned into Escherichia coli, and the properties of the recombinant protein (SacA) were examined. The sacA gene encodes a peptide of 501 amino acids with a predicted molecular weight of 56.7 kDa. Sequence alignment revealed the presence of three highly conserved motifs, NDPNG, RDP and EC, indicating that the enzyme belongs to glycoside hydrolase family 32. The predicted three-dimensional structure of the SacA enzyme was similar to β-fructofuranosidases of bifidobacteria, such that it contained a five-blade β-propeller module and a β-sandwich domain with one additional N-terminal α-helix. The optimal reaction temperature and pH of the enzyme were 37 °C and 6.0, respectively. Substrate hydrolysis and kinetic parameters demonstrated that β-fructofuranosidase from L. plantarum ST-III liberated fructosyl residues from the non-reducing terminus of fructans, such as sucrose, FOS, levan or inulin, and FOS was the preferred substrate. The expression of the sacA gene in a non-FOS-fermenting strain, Lactobacillus rhamnosus GG, enabled the recombinant strain to metabolize FOS and sucrose.