Article ID Journal Published Year Pages File Type
34860 Process Biochemistry 2013 7 Pages PDF
Abstract

We studied the inhibitory effect of gastrodin on tyrosinase using inhibition kinetics and computational simulation. Gastrodin reversibly inhibited tyrosinase in a mixed-type manner with Ki = 123.8 ± 20.2 mM. Time-interval kinetics revealed the inhibition to be a first-order process with mono- and bi-phasic components. Using AutoDock Vina, we calculated a binding energy of −6.3 kcal/mol for gastrodin and tyrosinase, and we performed a molecular dynamics simulation of the tyrosinase–gastrodin interaction. The simulation results suggested that gastrodin interacts primarily with histidine residues in the active site. A 10-ns molecular dynamics simulation showed that one copper ion in the tyrosinase active site was responsible for the interaction with gastrodin. Our study provides insight into the inhibition of tyrosinase by the hydroxyl groups of gastrodin. A combination of inhibition kinetics and computational calculations may help to confirm the inhibitory action of gastrodin on tyrosinase and define the mechanisms of inhibition.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,