Article ID Journal Published Year Pages File Type
35114 Process Biochemistry 2010 6 Pages PDF
Abstract

The sulfidogenic activity of two mesophilic sulfate reducing enrichment cultures was studied in H2-fed membrane bioreactors. The two enrichment cultures had different origins; one of them was a mesophilic and the other a psychrotolerant mesophilic culture. The operational temperatures of the reactors were gradually changed: for one the temperature was increased from 9 to 30 °C and for the other it was decreased from 35 to 9 °C. The specific sulfidogenic activities were 21–31, 52–53 and 57–92 mmol SO42− g VSS−1 d−1 at 9, 15 and 30–35 °C, respectively. The sulfate reduction rate of the SRB stabilized to a lower level after the temperature was decreased. The percent electron flow to sulfate reduction was on average 24–32, 50 and 47–69% at 9, 15 and 30–35 °C, respectively. The capability of mesophilic SRB to oxidize electron donor decreased as the temperature was decreased. The results indicate that starting of the reactor operation at 9 °C resulted in higher sulfidogenic activity at sub-optimal temperatures and selective enrichment of the psychrotolerant species improved. The start-up of the reactor at 35 °C resulted in decreased sulfidogenic activity as the temperature was decreased. This indicates that the operational temperature of bioreactors with mesophilic SRB can be decreased to 15–20 °C and the sulfidogenic activity will decrease by 10–40%. Moreover, an operational temperature of 9 °C seems to be close to the lower limit of active sulfate reduction for the mesophilic enrichment cultures used in this study.

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,