Article ID Journal Published Year Pages File Type
35227 Process Biochemistry 2009 7 Pages PDF
Abstract

A bacterial lipase from Arthrobacter sp. (ABL: IIIM Jammu, India strain, MTCC No. 5125) has been immobilized on non-magnetic (Type A) and magnetic (Type B) supports derived from copolymerization of 3-aminopropyltriethoxysilane and tetraethylorthosilicate. Immobilized ABL presented 21–34 mg/g protein binding providing 30–75 units/g activity in Type A non-magnetic composites and 24–45 mg/g protein binding providing 35–90 units/g activity with Type B supports containing magnetic particles. Immobilized ABL preparations have shown enhanced stability at pH 5–9 and temperature up to 70 °C whereas free ABL is unstable under these conditions. Improved hydrolytic conversion as well as enantioselectivity were observed with acyl fluoxetine intermediate (ethyl 3-hydroxy-3-phenylpropanoate alkyl acylates) and chiral auxiliaryacyl 1-phenyl ethanol using immobilized ABL derivatives (ee ∼99%; 3–4-fold increase in E-values) as compared to ABL enzyme/cells (ee 93–98%). Introduction of magnetic particles in these supports has led to easier separation process with high product recovery yields.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,