Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
35481 | Process Biochemistry | 2009 | 7 Pages |
N-Succinylamino acid racemase (NSAAR) with N-acylamino acid racemase (NAAAR) activity together with a d- or l-aminoacylase allows the total transformation of N-acetylamino acid racemic mixtures into optically pure d- or l-amino acids, respectively. In this work we have cloned and expressed the N-succinylamino acid racemase gene from the thermophilic Bacillus-related species Geobacillus kaustophilus CECT4264 in Escherichia coli BL21 (DE3). G. kaustophilus NSAAR (GkNSAAR) was purified in a one-step procedure by immobilized cobalt affinity chromatography and showed an apparent molecular mass of 43 kDa in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 150 kDa, suggesting that the native enzyme is a homotetramer. Optimum reaction conditions for the purified enzyme were 55 °C and pH 8.0, using N-acetyl-d-methionine as substrate. GkNSAAR showed a gradual loss of activity at preincubation temperatures over 60 °C, suggesting that it is thermostable. As activity was greatly enhanced by Co2+, Mn2+ and Ni2+ but inhibited by metal-chelating agents, it is considered a metalloenzyme. The Co2+-dependent activity profile of the enzyme was studied with no detectable inhibition at higher metal ion concentrations. GkNSAAR showed activity towards both aliphatic and aromatic N-acetylamino acids such as N-acetyl-methionine and N-acetyl-phenylalanine, respectively, with kcat/Km values ranging from 1 × 103 to 9 × 103 s−1 M−1. Kinetic parameters were better for N-acetyl-d-amino acids than for N-acetyl-l-specific ones.