Article ID Journal Published Year Pages File Type
35552 Process Biochemistry 2009 6 Pages PDF
Abstract

Laccase enzyme (L) from Trametes versicolor was entrapped in three hydrogel structures namely poly(acrylamide-N-isopropylacrylamide), P(AAm-NIPA), and semi-interpenetrating networks of poly(acrylamide)/alginate, P(AAm)/Alg, and poly(acrylamide-N-isopropylacrylamide)/alginate, P(AAm-NIPA)/Alg. The optimum temperatures for free and all immobilized systems were found to be 40 °C. For free and immobilized laccase systems of P(AAm-NIPA)-L, P(AAm)/Alg-L and P(AAm-NIPA)/Alg-L, Km values were found to be 6.7 × 10−3, 8.8 × 10−2, 5.5 × 10−2 and 1.8 × 10−2 mM; Vmax values were calculated as 1.8 × 10−3, 2.5 × 10−2, 1.5 × 10−2 and 6.1 × 10−3 mM min−1, respectively. For free and the same immobilized systems, the enzymes retained 42%, 91%, 79% and 86% of their initial activities at the end of 56 days of storage. After using the mentioned immobilized systems repeatedly 10 times, they retained 77%, 71% and 84% of their original activities, respectively. For free and the same immobilized systems, decolorization of Acid Orange 52 (AO52) in 6 h were found to be 63%, 50%, 48% and 66%, respectively. Addition of 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS, into the assay medium increased these values up to 73%, 73%, 74% and 75%, respectively.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,