Article ID Journal Published Year Pages File Type
35618 Process Biochemistry 2010 12 Pages PDF
Abstract

Inverse estimation of model parameters via mathematical modeling route, known as inverse modeling (IM), is an attractive alternative approach to the experimental methods. This approach makes use of efficient optimization techniques in the course of solution of an inverse problem with the aid of measured data. In this study, a novel optimization method based on ant colony optimization (ACO), denoted by ACO-IM, is presented for inverse estimation of kinetic and film thickness parameters of biofilm models that describe an experimental fixed bed anaerobic reactor. The proposed optimization method for parameter estimation emulates the fact that ants are capable of finding the shortest path from a food source to their nest by depositing a trial of pheromone during their walk. The efficacy of the ACO-IM for numerical estimation of bio-kinetic parameters is demonstrated through its application for the anaerobic treatment of industry wastewater in a fixed bed biofilm process. The results explain the rigorousness of mathematical models, the form of kinetic and film thickness models and the type of packing to be used with the biofilm process for accurate determination of kinetic and film thickness parameters so as to ensure reliable predictive performance of the biofilm reactor models.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,