Article ID Journal Published Year Pages File Type
36019 Process Biochemistry 2007 7 Pages PDF
Abstract

A transition in the bacterial growth rate to below maximum was found to be an optimum parameter of cellular physiology to increase the activity of acetohydroxy acid synthase, a regulatory enzyme in l-valine synthesis, and amino acid overproduction by Corynebacterium glutamicum ATCC 13032 recombinants under batch and fed-batch cultivation conditions. An increase in l-valine synthesis under transient situations when cellular growth rate was downregulated was correlated to a decrease in the activity of aconitase, a key enzyme in the tricarboxylic acid cycle (TCA) of C. glutamicum, and, in contrast, to an increase in the activity of glucose-6-phosphate dehydrogenase, a key enzyme in the pentose phosphate pathway (PPP). The increase in amino acid synthesis was also directly related to a drastic increase in intracellular pyruvate concentration. Thus, an increase in intracellular pyruvate availability and NADPH2 generation by PPP could be the metabolic origins of the increased l-valine overproduction by growth restrained C. glutamicum cell culture.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,