Article ID Journal Published Year Pages File Type
37127 Trends in Biotechnology 2013 10 Pages PDF
Abstract

Enzyme immobilization on solid supports has been key to biotransformation development. Although technologies for immobilization have largely reached maturity, the resulting biocatalysts are not well understood mechanistically. One limitation is that their internal environment is usually inferred from external data. Therefore, biological consequences of the immobilization remain masked by physical effects of mass transfer, obstructing further development. Work reviewed herein shows that opto-chemical sensing performed directly within the solid support enables the biocatalyst's internal environment to be uncovered quantitatively and in real time. Non-invasive methods of intraparticle pH and O2 determination are presented, and their use as process analytical tools for development of heterogeneous biocatalysts is described. Method diversification to other analytes remains a challenging task for the future.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,