Article ID Journal Published Year Pages File Type
37410 Trends in Biotechnology 2011 9 Pages PDF
Abstract

Seemingly identical cells can differ in their biochemical state, function and fate, and this variability plays an increasingly recognized role in organism-level outcomes. Cellular heterogeneity arises in part from variation in enzyme activity, which results from interplay between biological noise and multiple cellular processes. As a result, single-cell assays of enzyme activity, particularly those that measure product formation directly, are crucial. Recent innovations have yielded a range of techniques to obtain these data, including image-, flow- and separation-based assays. Research to date has focused on easy-to-measure glycosylases and clinically-relevant kinases. Expansion of these techniques to a wider range and larger number of enzymes will answer contemporary questions in proteomics and glycomics, specifically with respect to biological noise and cellular heterogeneity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,