Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
37451 | Trends in Biotechnology | 2011 | 8 Pages |
Substrate-mediated nucleic acid (NA) delivery involves the immobilization of NAs or NA delivery vehicles to biomaterials for localized transfection of cells. Self-assembled monolayers (SAMs) offer an easy system to immobilize delivery vectors. SAMs form well-defined surfaces; therefore, the effect of surface composition on vector immobilization and transfection efficiency can also be studied. To date, the most effective SAM-mediated delivery systems have utilized nonspecific interactions for immobilization; however, systems that rely on specific interactions between vector and surface can impart higher control of spatial and/or temporal delivery. This review summarizes systems that use both specific and nonspecific interactions for gene delivery from SAMs; highlights progress and remaining challenges; and explores other specific recognition modalities that might be employed for future applications in surface-mediated NA delivery.