Article ID Journal Published Year Pages File Type
37505 Trends in Biotechnology 2008 10 Pages PDF
Abstract

Photodynamic therapy (PDT) in cancer treatment involves the uptake of a photosensitizer by cancer tissue followed by photoirradiation. The use of nanoparticles as carriers of photosensitizers is a very promising approach because these nanomaterials can satisfy all the requirements for an ideal PDT agent. This review describes and compares the different individual types of nanoparticles that are currently in use for PDT applications. Recent advances in the use of nanoparticles, including inorganic oxide-, metallic-, ceramic-, and biodegradable polymer-based nanomaterials as carriers of photosensitizing agents, are highlighted. We describe the nanoparticles in terms of stability, photocytotoxic efficiency, biodistribution and therapeutic efficiency. Finally, we summarize exciting new results concerning the improvement of the photophysical properties of nanoparticles by means of biphotonic absorption and upconversion.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,