Article ID Journal Published Year Pages File Type
37516 Trends in Biotechnology 2007 6 Pages PDF
Abstract

The majority of hydrolytic enzymes used in white biotechnology for the production of non-natural compounds – such as carboxyl ester hydrolases, lipases and proteases – show a certain preference for a given enantiomer. However, they are unable to alter the stereochemistry of the substrate during catalysis with respect to inversion or retention of configuration. The latter can be achieved by (alkyl) sulfatases, which can be employed for the enantio-convergent transformation of racemic sulfate esters into a single stereoisomeric secondary alcohol, with a theoretical yield of 100%. This is a major improvement over traditional kinetic resolution processes, which yield both enantiomers, each at 50%.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,