Article ID Journal Published Year Pages File Type
377056 Artificial Intelligence 2012 24 Pages PDF
Abstract

Existing models for cluster analysis typically consist of a number of attributes that describe the objects to be partitioned and one single latent variable that represents the clusters to be identified. When one analyzes data using such a model, one is looking for one way to cluster data that is jointly defined by all the attributes. In other words, one performs unidimensional clustering. This is not always appropriate. For complex data with many attributes, it is more reasonable to consider multidimensional clustering, i.e., to partition data along multiple dimensions. In this paper, we present a method for performing multidimensional clustering on categorical data and show its superiority over unidimensional clustering.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence