Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
377156 | Artificial Intelligence | 2011 | 38 Pages |
Abstract
In this paper, we address the problem of specifying and computing preferred plans using rich, qualitative, user preferences. We propose a logical language for specifying preferences over the evolution of states and actions associated with a plan. We provide a semantics for our first-order preference language in the situation calculus, and prove that progression of our preference formulae preserves this semantics. This leads to the development of PPlan, a bounded best-first search planner that computes preferred plans. Our preference language is amenable to integration with many existing planners, and beyond planning, can be used to support a diversity of dynamical reasoning tasks that employ preferences.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence