Article ID Journal Published Year Pages File Type
377772 Artificial Intelligence in Medicine 2011 9 Pages PDF
Abstract

IntroductionIn this paper we propose a technique based on reservoir computing (RC) to mark epileptic seizures on the intra-cranial electroencephalogram (EEG) of rats. RC is a recurrent neural networks training technique which has been shown to possess good generalization properties with limited training.MaterialsThe system is evaluated on data containing two different seizure types: absence seizures from genetic absence epilepsy rats from Strasbourg (GAERS) and tonic–clonic seizures from kainate-induced temporal-lobe epilepsy rats. The dataset consists of 452 hours from 23 GAERS and 982 hours from 15 kainate-induced temporal-lobe epilepsy rats.MethodsDuring the preprocessing stage, several features are extracted from the EEG. A feature selection algorithm selects the best features, which are then presented as input to the RC-based classification algorithm. To classify the output of this algorithm a two-threshold technique is used. This technique is compared with other state-of-the-art techniques.ResultsA balanced error rate (BER) of 3.7% and 3.5% was achieved on the data from GAERS and kainate rats, respectively. This resulted in a sensitivity of 96% and 94% and a specificity of 96% and 99% respectively. The state-of-the-art technique for GAERS achieved a BER of 4%, whereas the best technique to detect tonic–clonic seizures achieved a BER of 16%.ConclusionOur method outperforms up-to-date techniques and only a few parameters need to be optimized on a limited training set. It is therefore suited as an automatic aid for epilepsy researchers and is able to eliminate the tedious manual review and annotation of EEG.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , , , , ,