Article ID Journal Published Year Pages File Type
377965 Artificial Intelligence in Medicine 2009 10 Pages PDF
Abstract

SummaryObjectiveComputational proteomics analysis of biomolecular interactions is proposed to determine molecular signatures of the HIV-1 protease inhibitors. A comparative microscopic analysis is conducted for a panel of inhibitors which exemplify a diversity of the HIV-1 PR binding mechanisms, from the active site inhibition to intervening with the protease folding and dimerization.Methods and materialsReplica-exchange Monte Carlo simulations with the conformational ensembles of the HIV-1 PR dimer and monomer structures enable a molecular analysis underlying diversity of the HIV-1 PR binding mechanisms.ResultsWe have investigated the molecular basis underlying diversity of the HIV-1 PR binding mechanisms. The molecular basis of the HIV-1 PR active site and dimerization inhibition mechanisms has been analyzed for an active site tripeptide inhibitor and a tetrapeptide inhibitor, which can act as both a dimerization inhibitor and a competitive active site inhibitor. We have also simulated a structural mimicry mechanism of the HIV-1 PR folding inhibition and dimerization, according to which the folding inhibitor targets the conserved HIV-1 PR regions by mimicking the interaction network of the active dimer.ConclusionsWe have shown that binding interfaces of the studied dimerization and folding HIV-1 PR inhibitors may enable structural mimicry with the hot spot residues of the HIV-1 PR dimer. The proposed structural models of intervening with the HIV-1 PR dimerization and folding support the mechanism of structural mimicry, which may alleviate drug resistance effects.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,