Article ID Journal Published Year Pages File Type
380638 Engineering Applications of Artificial Intelligence 2014 14 Pages PDF
Abstract

Email spam is an increasing problem that not only affects normal users of internet but also causes a major problem for companies and organizations. Earlier techniques have been impaired by the adaptive nature of unsolicited email spam. Inspired by adaptive algorithm, this paper introduces a modified machine learning technique of the human immune system called negative selection algorithm (NSA). A local selection differential evolution (DE) generates detectors at the random detector generation phase of NSA; code named NSA–DE. Local outlier factor (LOF) is implemented as fitness function to maximize the distance of generated spam detectors from the non-spam space. The problem of overlapping detectors is also solved by calculating the minimum and maximum distance of two overlapped detectors in the spam space. From the experiments, the results show that the detection accuracy of NSA–DE is 83.06% while the standard negative selection algorithm is 68.86% at 7000 generated detectors.

Graphical abstractShows the overall average of the NSA and NSA-DE.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,