Article ID Journal Published Year Pages File Type
380789 Engineering Applications of Artificial Intelligence 2013 10 Pages PDF
Abstract

In this paper a novel hybrid control strategy is developed for trajectory tracking control of unmanned underwater vehicle (UUV). The proposed hybrid control strategy consists of two subsystems: a virtual velocity controller and a sliding-mode controller. The tracking errors are shown to asymptotically converge to zero by Lyapunov stability theory using the new approach, whereas in the traditional backstepping method, speed jump occurs if the tracking error changes suddenly. The biologically inspired model is designed to smooth the virtual velocity controller output, avoid speed jumps of underwater vehicles and satisfy the thruster control constraint. The effectiveness and efficiency of the proposed control strategy are demonstrated through simulations and comparison studies.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,