Article ID Journal Published Year Pages File Type
381328 Engineering Applications of Artificial Intelligence 2011 15 Pages PDF
Abstract

Online set-point optimisation which cooperates with model predictive control (MPC) and its application to a yeast fermentation process are described. A computationally efficient multilayer control system structure with adaptive steady-state target optimisation (ASSTO) and a suboptimal MPC algorithm are presented in which two neural models of the process are used. For set-point optimisation, a steady-state neural model is linearised online and the set-point is calculated from a linear programming problem. For MPC, a dynamic neural model is linearised online and the control policy is calculated from a quadratic programming problem. In consequence of linearisation of neural models, the necessity of online nonlinear optimisation is eliminated. Results obtained in the proposed structure are comparable with those achieved in a computationally demanding structure with nonlinear optimisation used for set-point optimisation and MPC.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,