Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
381434 | Engineering Applications of Artificial Intelligence | 2007 | 16 Pages |
The pH process dynamic often exhibits severe nonlinear and time-varying behavior and therefore cannot be adequately controlled with a conventional PI control. This article discusses an alternative approach to pH process control using model-free learning control (MFLC), which is based on reinforcement learning algorithms. The MFLC control technique is proposed because this algorithm gives a general solution for acid–base systems, yet is simple enough to be implemented in existing control hardware without a model. Reinforcement learning is selected because it is a learning technique based on interaction with a dynamic system or process for which a goal-seeking control task must be performed. This “on-the-fly” learning is suitable for time varying or nonlinear processes for which the development of a model is too costly, time consuming or even not feasible. Results obtained in a laboratory plant show that MFLC gives good performance for pH process control. Also, control actions generated by MFLC are much smoother than conventional PID controller.