Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
381556 | Engineering Applications of Artificial Intelligence | 2010 | 13 Pages |
Model based predictive control (MBPC) has been extensively investigated and is widely used in industry. Besides this, interest in non-linear systems has motivated the development of MBPC formulations for non-linear systems. Moreover, the importance of security and reliability in industrial processes is in the origin of the fault tolerant strategies developed in the last two decades. In this paper a MBPC based on support vector machines (SVM) able to cope with faults in the plant itself is presented. The fault tolerant capability is achieved by means of the accurate on-line support vector regression (AOSVR) which is capable of training an SVM in an incremental way. Thanks to AOSVR is possible to train a plant model when a fault is detected and to change the nominal model by the new one, that models the faulty plant. Results obtained under simulation are presented.