Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
381763 | Engineering Applications of Artificial Intelligence | 2006 | 11 Pages |
Renewable energy sources are essential paths towards sustainable development and CO2 emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive use of this energy source is being avoided by some technical problems as fouling and slagging in the surfaces of boiler heat exchangers.Although these phenomena were extensively studied in the last decades in order to optimize the behaviour of large coal power boilers, a simple, general and effective method for fouling control has not been developed. For biomass boilers, the feedstock variability and the presence of new components in ash chemistry increase the fouling influence in boiler performance. In particular, heat transfer is widely affected and the boiler capacity becomes dramatically reduced. Unfortunately, the classical approach of regular sootblowing cycles becomes clearly insufficient for them.Artificial Intelligence (AI) provides new means to undertake this problem. This paper illustrates a methodology based on Neural Networks (NNs) and Fuzzy-Logic Expert Systems to select the moment for activating sootblowing in an industrial biomass boiler. The main aim is to minimize the boiler energy and efficiency losses with a proper sootblowing activation. Although the NN type used in this work is well-known and the Hybrid Systems had been extensively used in the last decade, the excellent results obtained in the use of AI in industrial biomass boilers control with regard to previous approaches makes this work a novelty.