Article ID Journal Published Year Pages File Type
382990 Expert Systems with Applications 2016 8 Pages PDF
Abstract

•Developing a new EEG sleep stages classification method based on the statistical features in time domain and complex networks properties.•The method provides better EEG sleep signals classification compared with the existing approaches reported.•Finding of not all sleep stages can be classified with the same number of the statistical features.•Stage Awake can be classified with a fewer statistical features due to including high activity compared with other sleep stages.

Sleep stage scoring is a challenging task. Most of existing sleep stage classification approaches rely on analysing electroencephalography (EEG) signals in time or frequency domain. A novel technique for EEG sleep stages classification is proposed in this paper. The statistical features and the similarities of complex networks are used to classify single channel EEG signals into six sleep stages. Firstly, each EEG segment of 30 s is divided into 75 sub-segments, and then different statistical features are extracted from each sub-segment. In this paper, feature extraction is important to reduce dimensionality of EEG data and the processing time in classification stage. Secondly, each vector of the extracted features, which represents one EEG segment, is transferred into a complex network. Thirdly, the similarity properties of the complex networks are extracted and classified into one of the six sleep stages using a k-means classifier. For further investigation, in the statistical features extraction phase two statistical features sets are tested and ranked based on the performance of the complex networks. To investigate the classification ability of complex networks combined with k-means, the extracted statistical features were also forwarded to a k-means and a support vector machine (SVM) for comparison. We also compare the proposed method with other existing methods in the literature. The experimental results show that the proposed method attains better classification results and a reasonable execution time compared with the SVM, k-means and the other existing methods. The research results in this paper indicate that the proposed method can assist neurologists and sleep specialists in diagnosing and monitoring sleep disorders.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,