Article ID Journal Published Year Pages File Type
383222 Expert Systems with Applications 2013 14 Pages PDF
Abstract

We present a flexible hybrid recommender system that can emulate collaborative-filtering, Content-based Filtering, context-aware recommendation, and combinations of any of these recommendation semantics. The recommendation problem is modeled as a problem of finding the most relevant nodes for a given set of query nodes on a heterogeneous graph. However, existing node ranking measures cannot fully exploit the semantics behind the different types of nodes and edges in a heterogeneous graph. To overcome the limitation, we present a novel random walk based node ranking measure, PathRank, by extending the Personalized PageRank algorithm. The proposed measure can produce node ranking results with varying semantics by discriminating the different paths on a heterogeneous graph. The experimental results show that our method can produce more diverse and effective recommendation results compared to existing approaches.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,