Article ID Journal Published Year Pages File Type
383952 Expert Systems with Applications 2013 14 Pages PDF
Abstract

The Negative Selection Algorithm developed by Forrest et al. was inspired by the way in which T-cell lymphocytes mature within the thymus before being released into the blood system. The mature T-cell lymphocytes exhibit an interesting characteristic, in that they are only activated by non-self cells that invade the human body. The Negative Selection Algorithm utilises an affinity matching function to ascertain whether the affinity between a newly generated (NSA) T-cell lymphocyte and a self-cell is less than a particular threshold; that is, whether the T-cell lymphocyte is activated by the self-cell. T-cell lymphocytes not activated by self-sells become mature T-cell lymphocytes. A new affinity matching function termed the feature-detection rule is introduced in this paper. The feature-detection rule utilises the interrelationship between both adjacent and non-adjacent features of a particular problem domain to determine whether an antigen is activated by an artificial lymphocyte. The performance of the feature-detection rule is contrasted with traditional affinity matching functions, currently employed within Negative Selection Algorithms, most notably the r-chunks rule (which subsumes the r-contiguous bits rule) and the hamming distance rule. This paper shows that the feature-detection rule greatly improves the detection rates and false alarm rates exhibited by the NSA (utilising the r-chunks and hamming distance rule) in addition to refuting the way in which permutation masks are currently being applied in artificial immune systems.

► A new affinity matching function for the negative selection artificial immune system algorithm is proposed.► The affinity matching function makes use of interrelationships between features to determine activation of antigen. ► Feature-detection rule greatly improves detection rates and reduces false alarm rates.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,