Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
384321 | Expert Systems with Applications | 2010 | 8 Pages |
Abstract
The job-shop scheduling problem has attracted many researchers’ attention in the past few decades, and many algorithms based on heuristic algorithms, genetic algorithms, and particle swarm optimization algorithms have been presented to solve it, respectively. Unfortunately, their results have not been satisfied at all yet. In this paper, a new hybrid swarm intelligence algorithm consists of particle swarm optimization, simulated annealing technique and multi-type individual enhancement scheme is presented to solve the job-shop scheduling problem. The experimental results show that the new proposed job-shop scheduling algorithm is more robust and efficient than the existing algorithms.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Tsung-Lieh Lin, Shi-Jinn Horng, Tzong-Wann Kao, Yuan-Hsin Chen, Ray-Shine Run, Rong-Jian Chen, Jui-Lin Lai, I-Hong Kuo,