Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
384570 | Expert Systems with Applications | 2009 | 5 Pages |
Association rule is a widely used data mining technique that searches through an entire data set for rules revealing the nature and frequency of relationships or associations between data entities. Supplier selection is a significant work in supply chain management. Often, there will be thousands of potential suppliers and identifying a subset of these suppliers can be a complex process of determining a satisfactory subset based on a number of factors. In this paper, the supplier selection can be viewed as the problem of mining a large database of shipment. The proposed method incorporates the extended association rule algorithm of data mining with that of set theory to find key suppliers. This research has employed a numerical example for the integrated method to develop suitable supplier clusters. The results show that the method is effective and applicable.