Article ID Journal Published Year Pages File Type
385215 Expert Systems with Applications 2012 9 Pages PDF
Abstract

The demand for the maritime transportation has significantly increased over the past 20 years due to the rapid pace of globalization. Terminal managers confront the challenge in establishing the appropriate quay crane schedule to achieve the earliest departure time of ship and provide efficient service. In general, quay crane schedule problems include two main issues (1) the allocation of quay cranes to handle the discharging and loading operations, and (2) the service sequence of ship bays in a vessel of each quay crane. Traditionally, the terminal planners determine the quay crane schedule based on their experience and own judgment. In addition, the interference among cranes and the increased in ship size further magnify its difficulty dramatically. Accordingly, this paper proposed a modified genetic algorithm to deal with the problem. To test the optimization reliability of the proposed algorithm, a set of well known benchmarking problem is solved, and the results obtained are being compared with other well known existing algorithms. The comparison demonstrates that the proposed algorithm performs as good as many existing algorithms and obtains better solutions than the best known ones in certain instances. In addition, the computational time(s) required are significantly much lesser, allowing it to be more applicable in practical situation.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,