Article ID Journal Published Year Pages File Type
385347 Expert Systems with Applications 2008 8 Pages PDF
Abstract

Bridge risks are often evaluated periodically so that the bridges with high risks can be maintained timely. This paper develops an adaptive neuro-fuzzy system (ANFIS) using 506 bridge maintenance projects for bridge risk assessment, which can help Highways Agency to determine the maintenance priority ranking of bridge structures more systematically, more efficiently and more economically in comparison with the existing bridge risk assessment methodologies which require a large number of subjective judgments from bridge experts to build the complicated nonlinear relationships between bridge risk score and risk ratings. The ANFIS proves to be very effective in modelling bridge risks and performs better than artificial neural networks (ANN) and multiple regression analysis (MRA).

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,