Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
385860 | Expert Systems with Applications | 2011 | 7 Pages |
Abstract
In literature a number of different methods are proposed to improve the prediction accuracy of grey models. However, most of them are computationally expensive, and this may prohibit their extensive use. This paper describes a much simpler scheme, based on the principle of concatenation, in which unit step predictions are concatenated by replacing the missing outputs by their previously predicted values. Despite its extreme simplicity, it is shown that the predicted values thus derived results in a better performance than the methods proposed in the literature. Simulation studies show the effectiveness of the proposed algorithm when applied to nonlinear function predictions.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Erdal Kayacan, Okyay Kaynak,