Article ID Journal Published Year Pages File Type
385911 Expert Systems with Applications 2006 11 Pages PDF
Abstract
Sovereign credit ratings are becoming increasingly important both within a financial regulatory context and as a necessary prerequisite for the development of emerging capital markets. Using a comprehensive dataset of rating agencies and countries over the period 1989-1999, this paper demonstrates that artificial neural networks (ANN) represent a superior technology for calibrating and predicting sovereign ratings relative to ordered probit modelling, which has been considered by the previous literature to be the most successful econometric approach. ANN have been applied to classification problems with great success over a wide range of applications where there is an absence of a precise theoretical model to underpin the relationships in the data. The results for sovereign credit ratings presented here corroborate other researchers' findings that ANN are highly effective classifiers.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,