Article ID Journal Published Year Pages File Type
385975 Expert Systems with Applications 2011 11 Pages PDF
Abstract

By extracting significant samples (which we refer to as support vector samples as they are located only on support vectors), we can identify principal genes and then use these genes to classify cancers either by support vector machines (SVM) or back-propagation neural networking (BPNN). We call this approach the support vector sampling technique (SVST). No matter the number of genes selected, our SVST method shows a significant improvement of classification performance. Our SVST method has averages 2–3% better performance when applied to leukemia and 6–7% better performance when applied to prostate cancer.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,